作为新型高速飞行器研制的关键技术之一,热结构是保障飞行器极端环境安全服役的基石和关键。纤维增强超高温陶瓷基复合材料从根本上克服了陶瓷材料固有的脆性,同时具有轻质、耐超高温、抗氧化烧蚀、可设计性强等优点,成为新型高速飞行器热结构的首选材料,具有重要的科学意义和工程应用价值。随着新一代高速飞行器朝着更高速度方向发展,其热结构面临的服役环境更加严苛,对材料耐高温、抗烧蚀等综合性能提出了更为苛刻的要求。
“高熵”是近年来出现的新的材料设计理论,其概念最初由高熵合金发展而来。随着高熵合金研究的不断深人,高熵的概念逐渐拓展到其他材料体系中。由于高熵效应的存在,高熵超高温陶瓷具有很多新奇的性能,使其成为超高温陶瓷领域的研究热点和重要发展方向。
中国工程院院士、中国科学院上海硅酸盐研究所董绍明研究员带领的团队将高熵超高温陶瓷与陶瓷基复合材料概念相结合,首次制备并报道了Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC高熵超高温陶瓷基复合材料。材料综合性能优异,抗弯强度~322 MPa,断裂韧性~8.24 MPa∙m1/2;在5MW/m2热流密度(温度~2430°C)条件经空气等离子烧蚀考核300s,材料线烧蚀率仅为~2.89μm/s,表现出优异的抗烧蚀性能。相比简单体系的超高温陶瓷基复合材料,Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC高熵复合材料具有全新的抗烧蚀机制:在高温烧蚀中心,(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C氧化形成 (TiZrHfNbTa)Ox高熵氧化物,并在降温过程中部分转变生成片状(Hf0.5Zr0.5O2)’及 (TiNbTaO7-y)’纳米晶;而在温度较低的烧蚀过渡区,(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C则直接氧化生成较小尺寸的片状(Hf0.5Zr0.5O2)’及纳米晶/棒状(TiNbTaO7-y)’。分析表明:烧蚀表面形成的多相氧化物保护层结构稳定,且在宽温域具有自愈合性,从而在烧蚀过程中对内部材料提供有效保护。该研究为耐极端高温陶瓷基复合材料及热结构的设计制备提供了全新的思路和解决方案。
相关研究成果以“Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites”为题发表在Composites Part B: Engineering(2022, doi:10.1016/j.compositesb.2022.110177)。上海硅酸盐所博士生蔡飞燕为第一作者,倪德伟研究员和董绍明研究员为通讯作者。
该项工作得到了科技部攻关项目专项、中科院重点部署和中科院前沿科学重点研究计划等项目的资助和支持。
文章链接:https://doi.org/10.1016/j.compositesb.2022.110177。
烧蚀中心形成的(TiZrHfNbTa)Ox:微观形貌(a,b)、晶体结构解析(c-e)及元素组成分析(f-i)
烧蚀表面片状(Hf0.5Zr0.5O2)’和 (TiNbTaO7-y)’ 纳米晶形成的“三明治”结构:微观形貌(a,d)、晶体结构解析(b, e)及元素组成分析(c, f)
Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC复合材料在高温烧蚀和降温过程中的物相转变示意图
供稿:结构陶瓷与复合材料工程研究中心
编辑:张力文